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SUMMARY

In many meta-analysis cases the estimator of the overall effect in independent trials
or experiments leads to unjustified significant results. This paper considers trials with
two arms where the summary statistic of interest is either the mean difference or the
risk difference. By using convexity principles of the relevant composed functions and
the moments of the chi-square distribution, corrections are made on the estimated
standard deviation of the estimator of the overall treatment difference. It is shown,
analytically and by simulations, that by making such corrections on the estimated
standard deviation, significance levels are attained which are relatively closer to the
nominal level.
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1. Introduction and notations

There are many areas (e.g. medicine, epidemiology and education) where the combi-
nation of results from different trials (studies or experiments) has become common.
For example, a situation may arise where one has to assess the overall treatment
difference when samples from the different trials are either homoscedastic or hetero-
scedastic. Recent studies by Li et al. (1994) and Boeckenhoff and Hartung (1998)
attest to the fact that there is a systematic overestimate in the significance levels when
combining studies in fixed effects models which may be due to the underestimate of
the variance of the estimator of the overall treatment mean. If one considers trials
which are comparative in nature, then measures of the common treatment difference
may take different forms, for instance, mean differences or effect sizes for quantitative



2 K.H. Makambi et al.

data, and risk differences, (logarithm) relative risks, or (logarithm) odds ratios for
binary data. By considering the mean difference and the risk difference we show both
analytically and by simulations that by making corrections on the estimated standard
deviation of the overall mean difference (or overall risk difference) significance levels
can be obtained which are relatively closer to the nominal level.

Suppose there are K ”two-armed” (multicenter) trials in a meta-analysis. Let 2,
be the lth observation in arm j of trial4;¢ =1,...,K,j=1,2,l =1,...,n;; wherenj;
is the total number of observations in arm j of trial <. Then the mean of the jth arm
of study 4 is Zj; = 3,73 Tja/ngi ~ (155,0%,,/n5), and we will write 0%, = 02, /nj;.
Define y; = T1; — Z2; = y1: — Y2i, Where yj; ~ (15, oﬁ) i=1,...,K, 7=1,2, is one
of the summary statistics available from arm j of study ¢ for a meta—analysis.
Further, define

=pte, i=1,...,K, 1)

where e; ~ (0,0%), and it is assumed that g = pi;; — po; is common in all the studies.
In this formulation, y; could be the mean difference for quantitative data or the risk
difference for binary data.

2. Estimation

2.1. Normal Data

Let yji ~ N(pj5,0%), i=1,...,K, j =1,2 (u;, = p; independent of trial number i);
so that y; ~ N(p,02), with 62 = 6%, + 0;; and e; ~ N(0,02), for i = 1,..., K. The
best estimator of p in each trial is the individual sample treatment difference

fri = g — Pog = Y1i — Yoi.

Due to variation in sample sizes and precision of the trials, and absence of treatment-
by-centre interaction, the best estimator of the underlying treatment difference (that
is common to all trials) is a weighted estimate, namely

ﬂ: Z o2 *Yis
Zl 11/31,1

with the associated variance ( cf: Whitehead and Whitehead, 1991)
1
Eilil 1/ ‘712.

Let s%; = s2. /nji, with 82, = (1/nji — 1) - 3025 (zju — T;3)%, be the estimate of 0%,

2 _
0; =
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fori=1,...,K, j =1,2. Then the estimate of 07 is 67 = s? = s2, + s2,. Therefore,
the estimate of 4 is given by

X 1
il‘* ,.2'yi
SETA L
2 __ 1
BT SE 5427
Eizll/gf

&

Further, we have that

Var(62) = Var(32) + Var(6%) = n1i2— T ol + %——2_—1 - o5, (2)
which is estmated by
s . — 2
Var(@}) = Var(@3) + Var(@h) = —— s+ —2— sl @)

2.2. Binomial Data

For binary data, let y;; be binomially distributed with parameters nj; and pj;, i =
1,...,K, j = 1,2. Therefore, y; = fi; — fig; = P1s — Pos ro " N(p,0?), with
M = P15 —P2; = p1 — P2, assumed identical in all the trials, i=1,...,K and Djs = Yji/nji.
Here

K

- 1
n ~ Yi,s (4)
Sl

with

. . . . . 1 . .

67 = 6%+ 63, = '(pu' —pi) + —— '(Pzi — P3;)- (5)
It is sufficient in our case to approximate Var(a ;) by the delta-method, thus

2
857 1-2p;:\% 1
A2y . 2 _ Je .. ..
Var(aji) ~ (apJ |PJz—PJz) ' Oji - (n—ﬂ_—l) ) n——‘“pﬂ(]‘ _p]l)’ (6)

which is estimated by replacing p;; with pj;.
In both the normal and binomial populations, to set confidence intervals and
testing hypotheses, we use the corresponding statistic

~

[J* approxr
Oh

The estimator 6, is biased and underestimates ;. This can easily be shown by using



4 K.H. Makambi et al.

the concavity of &;21 in c"r? and Jensen’s inequality (cf: Hartung, 1977 and Li et al.,
1994). That is,

E(6) < op.
Trials where the estimator 6, which underestimates o, is used in obtaining T are
often bound to be unjustifiably significant. Tables 1 and 2 below give some actual
simulated significance levels for testing the hypothesis Hy : u = 0 against a two

sided alternative H; : u # 0 at o = 0.05 for different constellations of (ni;,n2;) and

(62,,02.); i=1,...,K, for K = 3 for normal and binomial data.

Table 1. Actual simulated significance levels for K = 3 (Normal data)

(n11,n21) (n12,n22) (’nls,’nzs) (0’211,0‘321) (0‘312,0‘222) (0‘313,0"323) d%

(5,6) (6,7) (7,5) (1,9) 34) (54 10.3
(1,5) (3,3) (5,1) 10.5

(1,10) (3,30) (5,50)  13.1

(10,10) (10,10)  (10,10) (1,4) (3,4) (5,4) 8.3
(1,5) (3,3) (5,1) 8.1

(1,10) (3,30) (5,50) 9.2

Table 2. Actual simulated significance levels for K = 3 (Binomial data)

(n11,n21)  (naz,m22) (mas,mas) (p1,m2) &%

(7,13) (10,7) (15,10)  (0.3,03) 6.0
(0.4,04) 6.8
(0.505) 7.1
(0.6,0.6) 6.6
(0.7,07) 6.2

All of the attained significance levels given in Tables 1 and 2 are larger than the
expected nominal level of 5%. Our concern is in the methods which will make the
attained significance levels closer to the nominal level.

3. Some theoretical results

Define on IR the function f(z) = Zf; 1/x;; f is convex, and h(z) = 1/f(z) is
quasi-concave. Next, define A(0) = 0, then h(Az) = X- h(z), A > 0, z > 0, implies
that h is positively homogeneous; so together with the quasi-concavity it follows that
h is concave (cf: Hartung, 1976, section 1).
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By Jensen’s inequality, if f is convex, then Ef(z) > f(Ez) and the reverse is

true if f is concave.
Now, consider 62 = 63; + 62; as given earlier. By Patnaik (1949), the statistic

V& 2/E(0’ ) ~ x2,, where

5. (B@3) +B@3)’

v; = ,
: Var(&fi) + Var(&%i)
which is estimated by
A2 | A2\2
O, To:
b, =2. /(\11"‘ 3)

Var(6%;) + V;;(\&gi)
fori=1,...,K.
This facilitates the definition of the following approximate moments and inverse
moments of the chi-square distribution (cf: Patel et al., 1976):

5 — =l _ [vi  T(vi/2)
E (Ui) - 71/,< a’H ’yl/i - 2 1"(1/,/2 + 1/2)1 (7)
i+ 2
E(61) = buy1-0f bga== + ) 8)
A— 1 143
E(67%) = e o = )

-1
Now, with 63 = (Zfi 1 1/&?) , we have

K ) —2
Var(53) < (Z / ) (; V,-V—z 5 Jig) . (10)

This can be proved as follows:

Var(zl) = B ((2; ;,15))2‘ (E @ ?12) _1) |
5 E(<g§>'l)2~<gfs(&—e>>"
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have

-2 -2
2 X1 K 1
Var(aﬁ) < E Z—Z - ch’i‘l‘l';_?-
i 1

i=1 & =1
-2 -2
< (Lo S
< | - +1° =3
=1 Vb1 0] i=1 Y o}
K -2 K -2
V; 1 v; 1
= = (Y == 5 11
(; vi+2 0?) (;ui—2 a%) (11)

A2V2 . A cqe o .
by the concavity of (0,21) in &%; which is seen to be similar to h(x) above.

Now, let
K —— 1\ (& . 1\

-2 -2
with ¢ = (S, Vo0 +2)-1/0f)  — (TiZyw/i-2) 1/0?) " asin (14).
Define a class of estimators of o by

&u(y7) = (ag +7- \/;> (13)

with ¢ defined in (17) and the control parameter 7 > 0. It is clear that &ﬂ(&s, T) > 64
Further, consider the following results:

K -1
i) E(6n) = E\ (Z?)

-1
i 1
~2
=1 ’Y‘lz’z : Ui

[ X 1

2, (By82)2

mﬁz\@@

IA
&}
-

IN

-1
) ; since & is concave in &;

"




On the meta-analysis of treatment differences 7

(Ss(2)

1
< E i LIS (14)
B =1 cui+1 6"!2 ,

due to the convexity of 6, in 1/62. From (i) and (ii) above, we have the following

—1 % -1
1 1 1

=1 Gvitl i=1 Gt Vo (
15)

Il

TMx

>
s.qml Lot

4. Simulation Results

To demonstrate how the proposed methods perform, a simulation study is carried
out with the number of trials K = 3, 6 and 9 for both the normal and binomial
cases. Different constellations of unbalanced heteroscedastic samples are considered
as shown in Tables 3a, 3b, 3¢ for the normal case and Tables 4a, 4b, 4c for the binomial
case.

To get an impression of how these procedures perform for relatively large trials,
we started with K = 3 and made independent replications to give K = 6, denoted by
2 X w, and K =9, denoted by 3 x w; see the Tables below. Further, for K = 6, for
example, replication was done such that ny; = nyy, ng; = nog, N2 = N1s5, Nz = Nos,
n13 = Ni6, N23 = Nge and similarly for variances in the normal case. For K = 9,
11 = Mg = My, N1 = Ngg = N7, N2 = N5 = Nyg, Nzg = N5 = Nog, N3 = N =
N9, N23 = N2g = TNag.

The following representations are also used in the tables:

P 1 P 1
6u(c) = (Z Al —1§> , Ga(cry®) = <ZC—'13—L2)

=1 itl )

and &;(¢,7) as in (18).

From Tables 3a—c and 4a—c, we see that results with &4 always overestimate the
nominal significance level. This overestimate is relatively more pronounced for the
normal case (Tables 3a—c).

Using & (c) results in significance levels which are in the same order of magnitude
with the levels of o; notice the large number of levels which are actually equal for
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Table 3a. Simulated actual significance levels (10 000 runs) at nominal level a = 5%
for K = 3 and Ho : p = 0 vs H1 : p # 0 with test statistic as in (11) and different
estimators for the standard deviation with a1 = (n11,n21), a2 = (n12, na22), as = (n13,n23)
and by = (031110'321)1 by = (‘7312"7?22), b3 = (‘7213"7323)

Sample sizes Variances aZ{)
ai a2 as by bo ba Op 6’,3 &p (c) 5’,’1 ((;5, 0.5) &p (c'ya)
(6,13) (10,6) (15,10) (1,4) (3,6) (5,3) 6.0 79 6.0 4.6 54
(10,40) (30,60) (50,30) 6.0 8.0 6.0 4.7 5.4
(20,80) (60,120) (100,60) 6.1 8.3 6.6 5.0 5.8
(12,26) (20,12) (30,20) (1,4) (3,6) (5,3) 5.7 6.6 5.7 4.4 5.4
(10,40) (30,60) (50,30) 5.3 63 5.3 3.8 4.9
(20,80) (60,120) (100,60) 5.8 6.6 5.8 4.4 5.5

Table 3b. Simulated actual significance levels (10 000 runs) at nominal level a = 5% for
K =6and Ho : p =0 vs Hy : p # 0 with test statistic as in (11) and different estimators
for the standard deviation

Sample sizes Variances az)
2Xa; 2Xaz 2Xas 2xbi 2xby 2xbs ou 64 Galc) 6a(4,05) 8a(cy’)
(6,13) (10,6) (15,10) (1,4) (3,6) (5,3) 6.8 9.0 68 5.3 6.3
(10,40) (30,60) (50,30) 6.7 8.8 6.6 5.1 6.0
(20,80) (60,120) (100,60) 6.2 8.0 6.1 4.8 5.5
(12,26) (20,12) (30,20) (1,4) (3,6) (5,3) 58 6.7 58 44 5.5
(10,40) (30,60) (50,30) 5.7 7.1 5.8 44 5.5
(20,80) (60,120) (100,60) 5.4 6.5 5.5 4.0 5.2

Table 3c. Simulated actual significance levels (10 000 runs) at nominal level a = 5% for
K =9and Ho: p =0 vs Hy : p # 0 with test statistic as in (11) and different estimators
for the standard deviation

Sample sizes Variances Og%
3xa1 3xaz 3Xas 3xbi 3xby 3xbs op 6a Ga(c) 6a(,05) Faler’)
(6,13) (10,6) (15,10) (1,4) (3,6) (5,3) 6.7 8.7 6.7 5.1 6.0
(10,40) (30,60) (50,30) 6.7 9.1 6.8 5.2 6.1
(20,80) (60,120) (100,60) 6.6 8.6 6.5 5.1 6.0
(12,26) (20,12) (30,20) (1,4) (3,6) (53) 58 6.7 5.7 4.3 5.4
(10,40) (30,60) (50,30) 5.8 6.7 5.7 4.3 5.4

(20,80) (60,120) (100,60) 5.9 6.9 5.9 45 5.6
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Table 4a. Simulated actual significance levels (10 000 runs) at nominal level o = 5% for
K =3and Ho:p=0vs Hy:p#0 with test statistic like (11) and different estimators for
the standard deviation with a1 = (n11,n21), a2 = (n12,n22), as = (n13, n23).

Sample sizes a%
(pl’p2) A R
a1 az as op 6a  Galc) 54(4,05) &a(er®)
(7,13)  (10,7) (15,10) (0.3,0.3) 51 6.0 5.8 5.0 4.7
(04,04) 59 6.8 6.6 6.0 5.7
(0505) 62 71 7.0 6.5 6.4
(0.6,0.6) 5.7 6.7 6.5 5.9 5.8
(0.7,07) 52 6.2 6.0 5.1 4.7
(15,25) (20,15) (30,20) (0.3,0.3) 4.9 54 53 4.9 4.8
(04,04) 52 56 5.6 5.5 5.5
(0.5,0.5) 57 6.0 6.0 5.9 5.9
(06,06) 52 56 5.6 5.5 5.5
(0.7,07) 52 56 5.5 5.2 5.1

Table 4b. Simulated actual significance levels (10 000 runs) at nominal level o = 5% for
K =6and Ho: pu=0vs Hi:p3# 0 with test statistic like (11) and different estimators for
the standard deviation

Sample sizes %

(p1,p2) A

2 X a1 2 X a 2 X a3 Th op &:(c) &4(9,0.5) (Afﬁ(C’)’s)

(7,13) (10,7) (15,10) (0.3,0.3) 6.1 6.6 6.5 5.5 5.2
(04,0.4) 6.3 6.9 6.8 6.3 6.2
(0.5,0.5) 6.7 7.2 7.2 6.8 6.7
(0.6,0.6) 6.5 7.0 6.9 6.4 6.3
(0.7,0.7) 5.7 6.3 6.1 5.1 4.9

(15,25) (20,15) (30,20) (0.3,0.3) 52 5.6 5.6 5.2 5.2
(0.4,0.4) 54 56 5.6 5.4 5.4
(0.5,0.5) 55 5.8 5.8 5.7 5.7
(0.6,0.6) 58 6.1 6.1 5.9 5.9
(0.7,0.7) 52 5.7 5.6 5.2 5.1

the normal case, Tables 3a—c. The results of 6;(c) in the binomial case are in the
same order of magnitude with those of &, Tables 4a-c.

By using &p((}ﬁ, 0.5) and &(cy®) we obtain further improvements of significance
levels. The advantage with &, (¢,0.5) is that we can obtain more improvements by
varying the control parameter, 7.

There does not seem to be any sensitivity of the test statistics to changes in the
number of trials and the error variances.
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Table 4c. Simulated actual significance levels (10 000 runs) at nominal level a = 5% for
K =9and Ho: pu=0vs Hy:p+# 0 with test statistic like (11) and different estimators for
the standard deviation

Sample sizes a%

(p1,p2) A

3xa1 3xa2 3xas op 65 6u(c) 6a(¢,05) Faley®)

(7,13)  (10,7) (15,10) (0.3,0.3) 6.0 6.6 64 5.2 5.0
(04,04) 69 76 7.6 6.8 6.8
(0.5,0.5) 6.8 7.3 7.3 6.8 6.7
(0.6,06) 66 71 7.1 6.5 6.4
07,07 57 62 59 5.1 49

(15,25) (20,15) (30,20) (0.3,03) 55 57 57 5.4 5.4
(0.4,04) 60 63 6.3 6.0 6.0
(0505) 63 65 65 6.4 6.4
(0.6,06) 54 56 56 5.4 5.4
(0.7,07) 54 58 57 5.4 5.3

5. Conclusion

In this article we have illustrated analytically and by simulations that attained signi-
ficance levels could be improved by using suitable weights for the estimated standard
deviation of the estimator of the overall treatment difference. The use of the methods
developed is recommended especially when the number of trials is small.

A further investigation in this direction is to find out which methods are suitable
when the measure of treatment effect is, for example, the effect size. The extension
of these procedures to cases when there is treatment-by-center-interaction is also
possible.
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O meta-analizie réznic obiektowych w prébach niejednorodnych

STRESZCZENIE

W wielu przypadkach meta-analiza niezaleznych préb lub do$wiadczeh prowadzi do
niestusznie istotnych rezultatéw. W artykule rozwazane sg doSwiadczenia, w ktérych
statystyka testows bedaca przedmiotem zainteresowania jest §rednia réznica badz
réznica ryzyk. Dokonuje si¢ poprawienia oceny odchylenia standardowego estyma-
tora por6wnania obiektowego przy wykorzystaniu wlasnosci wypukloéci odpowiednio
skonstruowanej funkcji oraz momentéw rozkladu chi-kwadrat. W sposéb analityczny
oraz poprzez symulacje pokazano, iz poprawka prowadzi do utrzymania pozioméw
istotnosci testéw blizszych poziomom nominalnym.

SLOWA KLUCZOWE: réznica $rednia, réznica ryzyk, wypuklo$¢, poziom istotnosci.



